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1.1 Forward This paper is produced as part of an interdisciplinary collaboration amongst five engineering students as part of
the NYU CubeSAT design project at Tandon School of Engineering. The work in this paper is the sole work of the author,
unless otherwise noted. Where included, all works by team members who are not the author can be found directly on the
page, appropriately next to their contribution. This paper is limited in scope only to include the parts of project which the
author himself worked on, and will only briefly detail portions outside of that scope as needed. For more information on
those portions not detailed within, please contact the appropriate team member.

All code written for this project can be found on the projects github at http://github.com/EasonNYC/

1.2 Abstract With the shrinking of digital electronics and an active internet of resources connecting students can collaborate
with planetary scientists and space-faring engineers, the ability for universities and even high school students to design and send
meaningful scientific experiments up into space at significantly reduced cost has become a 21% Century reality. In 1999, a
collaboration between California Polytechnic State University (Cal Poly) and Stanford University led to the creation of the
CubeSAT specification.[2] A CubeSAT isa 10cm x 10cm x 10cm (1-U sized) satellite which has a mass of up to 1.33 Kg. [3]
The CubeSAT platform was designed to promote and develop the launching of small satellites into low earth orbit (LEO) by both
large and small academic, commercial and even amateur parties. As part of NASA’s own CubeSat Launch Initiative, NASA
provides an avenue for small CubeSAT payloads built by universities, high schools and non-profit organizations to fly and
deploy on upcoming rocket launches.[1] This project is intended to be a low cost implementation of a mission science payload
which might one day fly on one of those rockets, as part of the NYU CubeSAT design implementation.

2. Introduction The scope of this project covers the hardware and software integration of two PCB-based mission science
modules which are to be implemented on NYU CubeSAT, a small 1-U Sized CubeSAT built at NYU Tandon School of
Engineering. The mission science payload modules: Referred to throughout as modules “A” and “B” are located as the two
middle PCB sections of the satellite. This area was chosen because it was equally close to both the battery and radio modules,
because it would offer better placement of an Inertial Measurement Unit within the center of the satellite, and for maximal
natural shielding from radioactive particle collisions within a highly active aerospace environment.




2.1 Design Constraints In order to collaborate effectively, a few key design constraints were developed by the team and
followed during the development of mission science payload modules A and B. Notable constraints followed were:

Voltage rail: VBattfor use by Payload Modules:
Vin Max: 16.8V

Vin Min: 14.8V

Max Current Draw: 3A

Each module on the CubeSAT, including the MS payload, is based from the same “standard” schematic and PCB footprint. This
standard was developed by Matt Cocca, with coordination and input from all members as the development process continued.
The standard was designed so that the PCB modules form interlocking “stack” which routes the major communication and power
arteries throughout the satellite, limiting opportunities for a routing conflict between sub designs and modules. The schematic
and operating PCB from which the mission science payload is based can be seen in the figures below:
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Figure 2. Schematic of the PCB Standard developed by Matt Cocca. Annotations by David E Smith.
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Figure 3. Base layout of the PCB Standard. Design by M. Cocca

2.2 Development Strategy Because of the broad scope of hardware and software requirements for this project and it’s short
development timeframe, “development speedup” and “existing support” were the two largest consideration factors when coming
up with a development plan. This would impact both hardware and software development, as well as component choice and
selection going forward. Below is a brief listing of the early design guideposts followed for the MS Payload modules and
informed development of the rest of this project:

»  Select sensors, parts, and IC’s with existing open source COTS devkits for maximum support, reliability, and to
minimize development costs

» Use ST HAL library and code generation software for speedup in chip and peripheral configuration and software
development

*  Use a Real-time OS to synchronize sensor data flow and maximize sample rate/measurement frequency

e Debug with a HW debugger with multithreading support

»  Use spice modeling on high voltage part of circuit design for safety and mitigating risk to low level electronics

3. Software Organization

3.1 Development Environment This project was developed in C using the eclipse IDE environment. In the early stages of
software design, it used the ARM-GCC toolchain with personally edited makefiles for linking and compilation. It also was based
on ST’s now discontinued Standard Peripheral Library hardware abstraction layer (HAL). However, after switching to HAL’s
currently supported peripheral library (CubeMX), the decision was made to switch to let eclipse manage the makefile of the
project. This decision to switch to a managed project was largely due to convenience after finally switching to a working
implementation of the CubeMX library. Both the old and new environments can be found on the project github.

3.2 Debugging Environment In order to debug in a multithreaded environment, a Segger J-Link EDU debugger was used. The
Eclipse IDE was used as the base debugging environment alongside Segger’s own GDB variant in order to help visualize what
was happening within each thread at a given point in time.
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Figure 5. Jlink EDU debugger via segger.com

The JLINK debugger supplies a 20pin JTAG header and is compatible with Serial Wire Debug (SWD), a debugging interface
which typically uses 6 wires but minimally may use only two. SWD was used for this project.

3.3 Real Time Operating System (RTOS) Due to the high amount of sensor data which would need to be interpreted,
processed, and potentially sent off to the Radio OBC for transmission, a real time operating system would be required to manage
these priorities, resources, interrupts and time constraints. FreeRTOS (an open-source real time operating system) was selected
for inclusion in this project based on its large support base, availability for the selected microcontroller the project was using, and
easy to read documentation and example code. It also was compatible with the Segger JLINK debugger, with Segger going as far
as creating offering their own FreeRTOS visualization utilities on their website.[5]



3.4 Hardware Abstraction Layer (HAL) Developing code which interacts and configures a microcontroller chip, turning on
and off various peripheral buses, pins, clocks, and onboard peripherals can be a long and meticulous starting task for an
embedded software developer working with a new chip. To aid in this process, ST has developed the STCubeMX code
generation utility to allow the developer to quickly configure a chip using visual drop down elements, and with the click of a
button the project code environment is generated (as well as other helpful documentation). This greatly reduced development
time of the configuration part of the project because if a peripheral (say the CAN1 bus) or pin assignment needed to ever change,
it was a few simple drop-down selections away. One could even switch out the chip the project was based around for another
larger or smaller offering and it would only require minimal changes to the existing codebase after clicking regenerate. This is
the sort of speedup which turns what would be hours into minutes, making the STCubeMX utility and STCube HAL ideal for use
with this project.

3.5 Software Organization Because the eclipse environment was used in a configuration which managed the makefile for the
project, all header and source files for the project were kept separated in order to aid in their discovery during the compilation
and linking process. The default locations for the peripheral libraries (including FreeRTOS) were kept in the System folder,
which is the default location used by the Gnu-ARM Eclipse toolchain plugin. The Basic layout of the main project files, ST Cube
library, and FreeRTOS can be seen in the figures below:
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Figure 7. : Core source files, FreeRTOS, and Cube HAL organization stucture
4. Hardware Organization

4.1 Development Environment To create and organize the PCB and schematics for this project, Altium Designer was used.
Altium allows multiple PCB’s to be sourced within an overall design, as well as 3D cad view as well as part creating utilities. It
is also able to generate a working BOM and link chosen parts libraries to Digikey orders. For modeling and simulation, LTSpice
was used due largely to its ease of use and large built-in electrical model database.

4.2 Debugging Tools In general for this project, an oscilloscope was the most often tool used to look at signals passing to and
from the selected sensors. A “Bus Pirate” communications protocol “sniffer”” was additionally used at various points to interact
with various sensors and confirm readings taken by code running on the OBC. Twin XBee modules were initially included for
the wireless UART communication with a GPS modules, so that the GPS unit could be placed far away near a window (allowing
it to pick up a solid satellite fix) and coding and reception of that data could happen at a more ideal desktop/workbench in a



central location. Finally, A breadboard was bought to house the COTS development kits and breakout boards which would
encompass the project and connect to the target device.

4.3 Project Organization The schematics were organized so that they had an overall “reference” design which could be changed
permanently, and two child PCB’s which referenced the core schematic and would update automatically if the core reference
ever changed. This allowed the creation of two separate PCB module designs, sharing the same core foundation schematics seen
below.
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Figure 8. : In the photo above, Sheets 1 and 2 as well as the PCB Standard make up module A. Sheets 3,4 and the PCB Standard
make up module B.

4.4 Schematics The current schematics for the project can be seen below. Sheet 4, which houses the Geiger Counter Voltage
Boost Circuit was generated using LTSpice and is to be implemented in Altium at a later date.
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Figure 11. :Schematic Sheet 3. Inertial Measurement unit, Pressure Sensor and Hﬁmidity Sensor for Module B.

Figure 12. :Schematic Sheet 4. Geiger Counter and voltage boost circuit intended for use on module B.



4.5 PCB Layout As mentioned, the schematics are grouped into two module designs. Module A is centered around critical
components like the OBC and CAN transceiver modules, while Module B is centered around the high voltage Geiger Counter as
well as several other science instruments. Because of an issue brought to light by the spice simulation of the Geiger Counter
voltage boost circuit, only the PCB for module A has been started. Below is the current state of the layout of the PCB for module
A.
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Figure 13.: PCB Layout Module A

6. On Board Computer (OBC) The chip chosen for development with this project is the ARM based STM32F407VTG. This
chip was chosen due to the authors familiarity and experience working with the chip, as well as its suitable peripheral interface
for the various communication bus’s needed. It also has a large pre-existing support base, as well as a low cost easy to obtain
COTS development kit. The large majority of this project was designed while connected to an STM32F4 Discovery board
development Kit acting as the base OBC until at a later time the PCB could be manufactured. Some of the key features of this
chip are:

e 32-bit ARM® Cortex® -M4 with FPU core
e 168 MHz Clock Rate
LQFP100 package
e 1-Mbyte Flash memory
e 192-Kbyte RAM
e Support for USB, CAN, SPI, 12C, UART

6.1 Pin Mapping Diagram
Below is the current pin mapping diagram for the OBC, as produced by the STCubeMX software. All active pins are highlighted
in green.
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Figure 14. : STM32F4 Pin Mapping Diagram produced by the STCubeMX utility

6.2 OBC Clock Configuration Settings

The STM32F4 was configured using the STCubeMX utility to run at 100Mhz sourced from an 8MHz external crystal. The
100Mhz (reduced) speed was chosen in order to reduce power consumption but still maintain a considerable speed for the
various communication busses while maximizing battery life. The final clock speed can be seen as the result “FCLK” below.



RTC Clock Mux

HS HSE_RTC CS
Input frequancy

-:E LSE =Y To RTC (KHz)
0-1000 KHz LSiRC LSl —I 100 |Ell|emel PTP dlock {MHz)}

HCLK to AHE bus, core,

o

@
Y

To IWDG (KHz) 100 | memory and DMA (MHz)
32 KHz
HSIRC System Clock Mux : 100 To Cortex System timer (MHz)
Hsi| ™
- FCLK Cortex clock (MHz)
16 MHz SYSCLK (MHz)| AHE Prescaler HCLK [MHz) APE1 Prescaler
HsH PCLKL
e 100 14 |w T APEL peripheral clocks (MHz)
168 MHz max
pLLCL N
PLL Source Mux (O] X2 APB1 Timer clocks (MHz)
LT | ] APE2 Prascaler
(] T2 PCLKZ .
_ Enable css | [ 12 [~] e APE2 peripheral clocks (MHz)
Input frequency HsE ! |v X200|vh—| /2 |v
- : ' HSE *—>|® ™ sl VE %2 100 | APE2 timer clocks (MHz)
P
4-26 MHz - 48MHz clocks (MHz)

Main PLL

125 source Mux

PLLIZSCLE PLLIZSCLE [
[x:22] - = 12 ]~} -®
Input frequency puzs M T 125 clocks (MHz)

Ext.clock

12288 Lt L
MC02 source Mux

7
MHz
SYSCLK

PLLIZSCLE
(MHz) MCOZ e 4-|:D-1—

HSE
PLLCLE
source Mux

LSE

(MHz) MCO 1 e ‘:D‘—

/SO ® 0 O\NE/SDO O O @\

Figure 15. : Clock Settings used for the STM32F407VTG OBC

6.3 Power Management and Load Sequencing

The STM32F4 and all other sensors within the mission science payload are designed to run at 3.3V, with the exception of the
Geiger counter circuit, which is designed to run at 5V. As the battery voltage is fed into OBC module A from one of the 4
satellite bus headers, it is split between a voltage divider circuit (for reading the battery voltage) and an INA219 12C current
sensor placed just after a power blocking diode (for reading the module load current). When the voltage exits the Current Sensor,
it is passed through a TPS62162 Voltage Regulator, which outputs the primary 3.3V feed used by every other component in the
mission science payload.
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Figure 16. : Power Regulation Circuit

Due to the phenomenon of “in-rush current” that happens when all of the peripherals, microcontrollers, and IC’s in a circuit turn
on simultaneously, a simple voltage regulator will not be enough to protect the spacecraft circuitry from brownouts when these



devices are powered on together by a voltage regulator. So a dual 12C based Load Sequencer (TPS22994) was found and
included, outputting power rails for each respective sensor on both modules and controllable through 12C, as seen below.
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Figure 17. : Power Sequence IC circuit for modules A and B

7. Mission Science Payload

The mission science payload selected for this satellite includes a Geiger Counter, Humidity and Temperature sensor, GPS device,
as well as a Pressure Sensor and Inertial Measurement Unit (IMU). The Pressure sensor and IMU have been included in the
schematics and design files of this project however they have not yet been implemented or tested in software. Below is a
hardware and software overview of the sensors included with the science payload, all of which have been tested and
implemented into the project.



7.1 GPS Unit

Figure 18: Venus GPS breakout from Sparkfun.com

The GPS Unit used on the CubeSAT is a Venus638FLPx GPS Sensor with SMA antenna. This unit runs at 3.3V and uses UART
communication to send and receive geolocation data to the OBC from signal timings sent by orbiting satellites. In addition to
outputting data, it also outputs a 1PPS signal (active only when it has a fix) which can generate extremely accurate measurement
timings. The 1PPS pin is connected to an interrupt on the OBC.

Venus GPS header
U3
o8 Imost DA o
e NISO SCL
VERS 33 == 1 CLKE Tl T
—" T Cs B BNTI0 - GPG_IPPS »
T UEARTI - TX _—=13 Eg NPEE T Eig
USARTI-BX —¢ AN TGPID - 1
w8135y @D [+
—T{HEEE S VBAS— D3
«qu.ED
Temnis63 SFLPx
= -
GND 220
s doublecheck thils valise
[

D
Figure 19. : The Venus GPS unit schematic used by module A.

The GPS unit was run in binary mode so that message length could be shortened. In order to keep track of incoming data, a state
machine is used to process the bytes. Below is a rough sketch of the states diagram used in development:

//GPS State Machine and initial state
typedef gum {GETSTART, GETLENGTH, GETPAYLOAD, GETCHECKSUM, GETTRAILER, VALIDATE} GPS_STATE;
static GPS_STATE state = GETSTART;

Wait for 2 bytes Wait for 2 bytes Wait for LEN bytes Wait for 1 byte Wait for 2 bytes
Start——2 1 Get Start got: {0xAQ0,0xA 1} S3 Get Payload S4 Get Checksum S5 Get Trailer |got: {Ox0D,0x0A} | S6 Validate:
—————>|S2GetPlLlength > 1 —) — Calculate Checksum
, Store Valid Payload

1=0xA0,0xA1 LEN/~ BUFFER SIZE 1=0x40D,0X0a
Checksum Valid (done) | invalid (reset)

Figure 20. : GPS process state diagram for incoming GPS bytes.

In order to integrate the GPS module with FreeRTOS synchronization, A basic UPPER half/LOWER half thread and interrupt
implimentation was used to synchronize the real time constraints required by this device. The synchronization strategy used is
depicted in the context transition diagram below.
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A context switch occurs. The CAN Publisher context is saved, The UART Interrupt Service Routine begins execution.
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Figure 21. : GPS Process Thread Synchronization Routine / Context transition diagram

7.2 Humidity Sensor

SI7021 humidity sensor from Sparkfun.com

For humidity and Temperature readings, the S17021 Humidity Sensor from Sparkfun was selected. This module communicates
using 12C and uses the same basic threading strategy as GPS.

Due to it’s small size, the Sparkfun breakout board for this device was chosen for inclusion with the overall spacecraft design, as
opposed to building it into the PCB module itself. The schematic housing the breakout for this device can be seen below:
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Figure 22. : S17021 Breakout



The RTOS thread synchronization strategy for this device is largely the same one used for the GPS module, except because the
12C bus is shared amongst multiple devices, a special 12C mutex is used to keep other 12C devices from interrupting the current
12C transmission in the case of a context switch.

The results of testing the SI7021 can be seen in the figure below:

)= Variables 9 Breakpoints ® Trace Control &\ Modules € Expressions 2 Lt 8 % X% it v = O
Expression Type Value

®:tempc . float 24.2681217

r (@ NAvdata | NAVstruct .}

» (2 tmpNAVdata | NAVstruct (.}

t-i2cdatarec - volatile uint32_t 16

:RHpct . float 38.4068909

» (@ RHdata . volatile uints_t[2] 0x200048d4 <RHdata>
®:i2cdatasent volatile uint32_t 16

[ i2c.h (Eﬂ tasks.c ?3] [ lisk.c [R semihostina.h = B8 ] 8= outline == Disassemblv |} Reaisters 52 = B8

Figure 23. : SI7021 test data. (TempC) Temperature is 24.26 degrees Celsius. Relative Humidity (RHData) is 38.4 percent.

7.3 Geiger Counter

Geiger Counter breakout from Sparkfun.com

The Geiger Counter was the most complex instrument developed for on the MS Payload. Not only is the tube very large in
physical size, but in order for the Geiger tube to function, a complex voltage boost circuit must be created to raise the on board
voltage on the PCB to above 320V (ideally 450V).[4] In addition, the RTOS software implimentation interacting with the unit
would require not just a process thread but also an external interrupt handler as well as an interrupt timer. These would be needed
to process and maintain the current Clicks per second (CPS) and also clicks per minute (CPM), using a sliding window circular
array.

Below is an oscilloscope capture of a “click” (radiation event), produced by the tube:
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Figure 24. : Oscilloscope output of a Geiger tube “Event”.

The thread synchronization routine used for this device on the spacecraft can be seen below:

A context switch occurs. The CAN Publisher context is saved. the flagged ISR begins execution. Ifinterrupt was 3 timer tick event: |f Inferrupt was an external rising edge svent
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Figure 25. :Geiger Counter Thread Synchronization and Interrupt Handling Routine



Because the Geiger counter operates at 5V (boosting to above 450V) [4], and the spacecraft operates at 3.3V, it was decided it
would be best to simulate the circuit in LTSpice before deciding on a permanent implimentation for inclusion in the schematic
design. The simulation and resulting waveform outputs tested can be seen in the figures below.
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Figure 26. : LTSpice Circuit used for simulation
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Figure 27. : Voltage output for VIN@5V

Figure 28. : Voltage output for VIN@3.3V

As can be seen from the figures above, the voltage output for the Geiger Counter VVoltage Boost circuit at 3.3V would not be
enough to drive the Geiger Tube without significant modifications to the circuit. The large oscillation on the signals seen in both
figures was determined to not be due to a flaw in the circuit design but rather due to imperfect models used in the simulation
software package.

In order to get around the 3.3V issue, a 5V rail was created on header four, and routed from a separate module on the spacecraft.
Unfortunately, this result caused a delay in the development of module B.

8. Conclusion and Future Development

Work is still to be done on both modules before spaceflight can happen. This includes the Pressure Sensor and IMU selected for
this design as well as the power sequencing code and CAN transceiver software. The PCB for module A is currently in the layout
phase and the PCB for module B should begin work soon. Much of the other systems and modules on the spacecraft are already
produced and ready for flight testing and the MS Payload is not far away from a future flight test.



9. Timeline

Research and acquisition of

September — December 2016 Development enviroment

Implimentation begins. Project proposal
February 16" 2017 submitted.

High Level power and communication
February 23th 2017 diagram created.

UART module code written. Work on
February 28th 2017 GPS begins.
March 7th 2017 GPS messages aquired.

Switch to CubeMX peripheral
Mach 22nd 2017 enviroment. FreeRTOS installed.

GPS thread synchronized. GPS Live
March 28th 2017 Demo in class.

12C module implimented. SI7021 code
April 11th 2017 written.

Gieger Counter code written. Schematic
April 18th 2017 capture begins on module A.

Schematic Capture begins on module B.
LTSpice testing on Geiger Counter boost
April 25th 2017 circuit begins.

Geiger counter modeling results
presented. Schematic capture of

May 2nd 2017 module A complete.
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